Teorema Bayes Dan Contoh Teorema Bayes

TEOREMA BAYES

Dalam teori probabilitas dan statistika, Pengertian Teorema Bayes adalah teorema yang digunakan untuk menghitung peluang dalam suatu hipotesis, Teorema bayes dikenalkan oleh ilmuan yang bernama Bayes yang ingin memastikan keberadaan Tuhan dengan mencari fakta di dunia yang menunjukan keberadaan Tuhan. Bayes mencari fakta keberadaan tuhan didunia kemudian mengubahnya dengan nilai Probabilitas yang akan dibandingkan dengan nilai Probabilitas. teorema ini juga merupakan dasar dari statistika Bayes yang memiliki penerapan dalam ilmu ekonomi mikro, sains, teori permain, hukum dan kedokteran.

Teorema Bayes akhirnya dikembangkan dengan berbagai ilmu termasuk untuk penyelesaian masalah sistem pakar dengan menetukan nilai probabilitas dari hipotesa pakar dan nilai evidence yang didapatkan fakta yang didapat dari objek yang diagnosa. Teorama Bayes ini membutuhkan biaya komputasi yang mahal karena kebutuhan untuk menghitung nilai probabilitas untuk tiap nilai dari perkalian kartesius. penerapan Teorema Bayes untuk mencari penerapan dinamakan inferens Bayes

Contoh Soal :
Sebuah perkantoran biasanya membutuhkan tenaga listrik yang cukup agar semua aktifitas pekerjaannya terjamin dari adanya pemutusan aliran listrik. Terdapat dua sumber listrik yang digunakan PLN dan Generator. Bila listrik PLN padam maka secara otomatis generator akan menyala dan memberikan aliran listrik untuk seluruh perkantoran. Masalah yang selama ini mengganggu adalah ketidak satabilan arus (voltage) Listrik. Selama beberapa tahun terakhir, diketahui bahwa perkantoran itu menggunakan listrik PLN adalah 0.9 dan peluang menggunakan generator adalah 0.1 peluang terjadi ketidak stabilan pada arus PLN maupun generator masing-masing 0.2 dan 0.3.

Permasalahan ini di ilustrasikan Sebagai berikut :

E   : Peristiwa listrik PLN digunakan
Ec : Peristiwa listrik Generator digunakan
A  :Peristiwa terjadinya ketidak stabilan arus

Peristiwa A dapat ditulis sebagai gabungan dua kejadian yang lepas





Dengan menggunakan probabilitas bersyarat maka :

Diketahui:
P(E)=0.9    P(E’)=0.1
P(A|E)=0.2    P(A|E’)=0/3
Sehingga:
P(A)=P(E).P(A|E)+P(E’).P(A|E’)
=(0.9).(0.2)+(0.2).(0.3)
=0.21

Kembali pada permasalahan diatas, bila suatu saat diketahui terjadi ketidak stabilan arus listrik, maka berapakah probabilitas saat itu aliran listrik berasal dari generator ? Dengan menggunakan rumus probabilitas bersyarat diperoleh.

P(E’|A)=P(E’∩A)/P(A)
            =P(E’).P(A|E’)/P(A)
            =0.03/0.21=0/143

Peristiwa B1,B2,….,Bk merupakan suatu sekatan(partisi) dari ruang sampel S dengan P(Bi)≠0 untuk i=1,2,…,k maka setiap peristiwa A anggota S berlaku:



























Digunakan bila ingin diketahui probabilitas P(B1|A),P(B2|A)….,P(Bk|A) dengan rumus sebagai berikut :






Suatu generator telekomunikasi nirkabel mempunyai 3 pilihan tempat untuk membangun pemancar sinyal yaitu didaerah tengah kota, daerah kaki bukit dan daerah tepi pantai, dengan masing-masing mempunyai peluang 0.2,0.3 dan 0.5. Bila pemancar dibangun ditengah kota, peluang terjadi gangguan sinyal adalah 0.05. Bila pemancar dibangun dikaki bukit, peluang terjadinya gangguan sinyal adalah 0.06. Bila pemancar dibangun ditepi pantai, peluang gangguan sinyal adalah 0.08.

A. Berapakah peluang terjadinya gangguan sinyal ?
B. Bila diketahui telah terjadinya gangguan pada sinyal, berapa peluang bahwa operator tersebut ternyata telah membangun pemancar di tepi pantai ?

Misal :
A          = Terjadi ganguan sinyal
B1        = Pemancar dibangun di tengah kota
B2        = ----------------------------di kaki bukit
B3        = ----------------------------di tepi pantai
Maka :
A. Peluang terjadinya ganguan sinyal
P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)
       = (0,2).(0.05)+(0.3)(0.06)+(0.5)(0.08)=0.001+0.018+0.04=0.068






B. Diketahui telah terjadi gangguan pada sinyal, maka peluang bahwa operator ternyata telah membangun pemancar di tepi pantai.



Dapat dinyatakan dengan ,"peluang bersyarat bahwa operator membangun pemancar di tepi pantai bila diketahui telah terjadi gangguan sinyal".









 Semoga artikel Teorema Bayes dan Contoh Teorema Bayes bermanfaat bagi anda.


3 Komentar untuk "Teorema Bayes Dan Contoh Teorema Bayes"

 
Copyright © 2014 Damai7 - All Rights Reserved
Template By. Konsen Fokus